

Physics 1

LOUAY KARAKER

Hi.

What is physics?

HOW THINGS WORK?

GIANCOLI

The study of physics can be divided into six main areas:

- 1. Classical mechanic Physics I
- 2. Relativity
- 3. Thermodynamics
- 4. Electromagnetism $\rightarrow physics I$
- 5. Optics
- 6. Quantum mechanics

Physics I

Physics and Measurement

Motion in One Dimension

Vectors

Motion in two Dimensions

The Laws of Motion

Circular Motion and Other Applications of Newton's Laws Energy of a System

Conservation of Energy

Linear Momentum and Collisions

Rotation of a Rigid Object About a Fixed Axis

Angular Momentum

Solving Physics Problems

• "I understand the concepts, but I just can't solve the problems."

In physics:

Understanding concepts = Being able to solve problems.

Problem-Solving Strategies

Problem-Solving Strategies

- 1. Identify the relevant concepts:
 - \checkmark Target variables of the problem
 - \checkmark Known quantities
 - ✓ Algebraic expression or Numerical answer

2. Set up the problem:

- \checkmark Equations that will be used to solve the problem and how it'll be used
- ✓ The variables you have identified correlate exactly with those in the equations
- ✓ Draw a sketch
- \checkmark Estimate what your results will be
- (If this seems challenging, don't worry—you'll get better with practice!)

X = 10.10 = 100 m

 \checkmark Do the math

4. Evaluate your answer:

✓ Compare your answer with your estimates

Physics & Measurement

Experimental observations & Quantitative measurements

Numbers & Units

Physical Quantities

Derived Physical Quantities

A= [[] A= A.D: [L]. (L)

Unit Systems

International System, or SI
Lim T(S) M(W)

The British System (U.S. customary units)
L(S)

Conversion of Units:

Sometimes it is necessary to convert units from one measurement system to another.

Factors between SI and U.S. customary units of length are as follows:

1 mile = 1609 m = 1.609 km 1 ft = 0.3048 m = 30.48 cm 1 m = 39.37 in = 3.281 ft 1 in = 0.0254 m = 2.54 cm

Table 1.4Prefixes for Powers of Ten

Important notes:

- ✓ All units in the problem should be in the same system.
- \checkmark Need to know conversion.
- ✓ Only quantities with same units can be added or subtracted.

Example 1:

This expression: 50 m + 12 cm = ? Yields:

a) $5012 \text{ cm} \sqrt{7}$ b) $50.12 \text{ cm} \sqrt{7}$ c) $5012 \text{ m} \sqrt{7}$ d) $5.012 \text{ m} \sqrt{7}$

> This expression: 50 cm x 12 kg = ? Yields: a) 0.6 m.kg × $56 \times 10^{-1} \times 12 = 600 \times 10^{-1} = 6 \text{ m} \cdot \text{Kg}$ b) 600 cm.kg $\sqrt{50} \times 12 = 600 \text{ cm} \cdot \text{Kg}$ c) 60000 cm.g × $50 \times 12 \times 10^{-1} = 600 \times 10^{-1} = 600 \text{ for } \text{cm} \cdot \text{g}$ d) All of above ×

Example 2:

- On an interstate highway in a rural region of Wyoming, a car is traveling at a speed of 38.0 m/s. Is the driver exceeding the speed limit of 75.0 mi/h?
 - 1 mile = 1609 m = 1.609 km 1 ft = 0.3048 m = 30.48 cm 1 m = 39.37 in = 3.281 ft 1 in = 0.0254 m = 2.54 cm

® THANK YOU

