
Lecture`s Outlines:

 Physical quantities and Measuring Tools
 Measuring Units (Systems, SI, Standard Units, Prefixes, Conversion of units, Accuracy, Precession, Uncertainty and Significant Figures)
 Dimensional Formula

1) Physical quantities and Measuring Tools

Physical Measurement process elements are physical quantity, tool

a) Physical Quantities: Classified according to derivation

Fundamental

- Quantity that cannot be defined in terms of other
- Ex: Length, Mass, Time

Derived

- Quantity that is defined in terms of fundamental
- Ex: Force, Speed, Work

Example 1:

- The fundamental physical quantities from the following are
- (a) the length and the area
- c) the mass and the volume

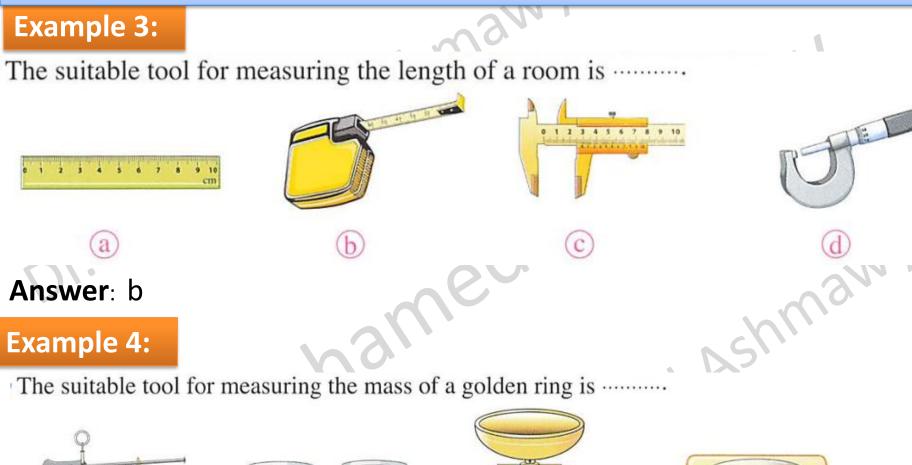
b the velocity and the acceleration d the time and the mass

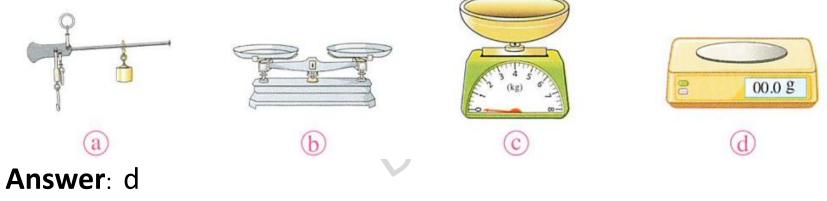
waw

Answer: d

Example 2:

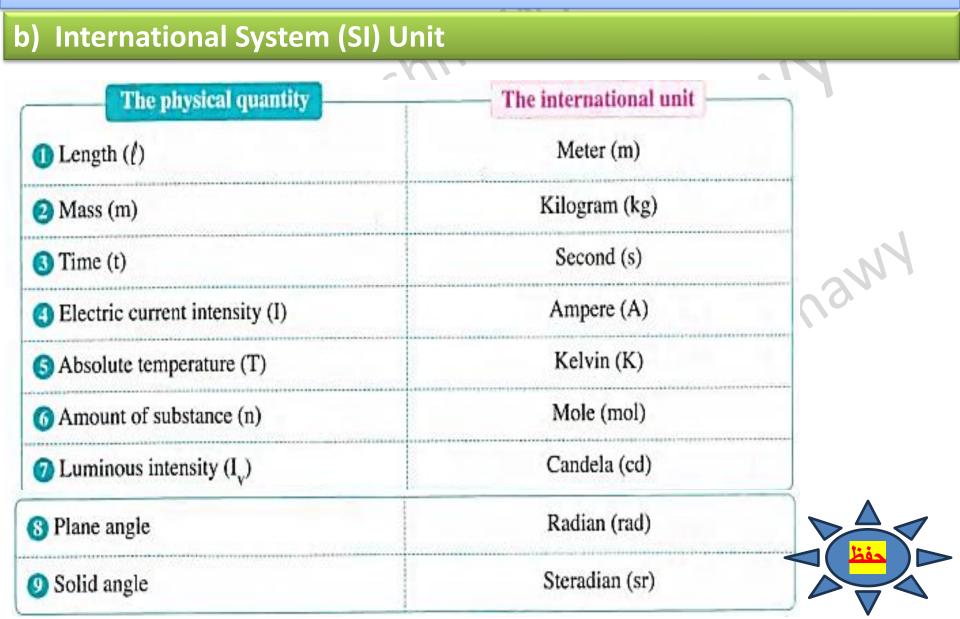
The derived physical quantities from the following are


- a velocity distance time
- c work force distance


b mass - density - volume
 d force - volume - density

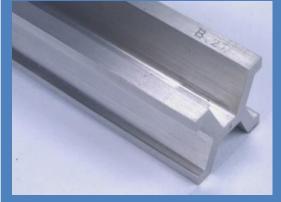
Answer: d

(N)


2) Measuring Units (Systems, SI, Standard Units, Prefixes and Conversion of Units)

a) Unit Systems

	Units of measurement			
The System of fundamental units physical quantity	The French system (Gaussian system) (C.G.S)	The British system (F.P.S)	The Metric system (M.K.S)	
Length (l)	Centimeter (cm)	Foot (ft)	Meter (m)	
Mass (m)	Gram (g)	Pound (lb)	Kilogram (kg)	
Time (t)	Second (s)	Second (s)	Second (s)	



L 1: Physical Measurements, Units and Dimensional Formula Units of Length, Mass, and Time				
Dimension	SI	CGS	U.S. Customary Units	
ength	meter (m)	centimeter (cm)	foot (ft)	
mass	kilogram (kg)	gram (g)	slug	
ime	second (s)	second (s)	second (s)	

c) Standard Units

The Standard Length (The Standard Meter) It is the distance between two engraved marks at the ends of a rod made of platinum and iridium alloy kept at 0°C.

The Standard Mass (The Standard Kilogram)

It is the mass of a cylinder made of platinum and iridium alloy of specific dimensions kept at 0°C.

The Standard Time (The Standard Second)

Usually 1 second measured w.r.t. :

Day and night times

1 Sec =
$$\frac{1}{24 \times 60 \times 60} = \frac{1}{86400}$$
 Day
Recently:

An Atomic (Cesium) clock is used

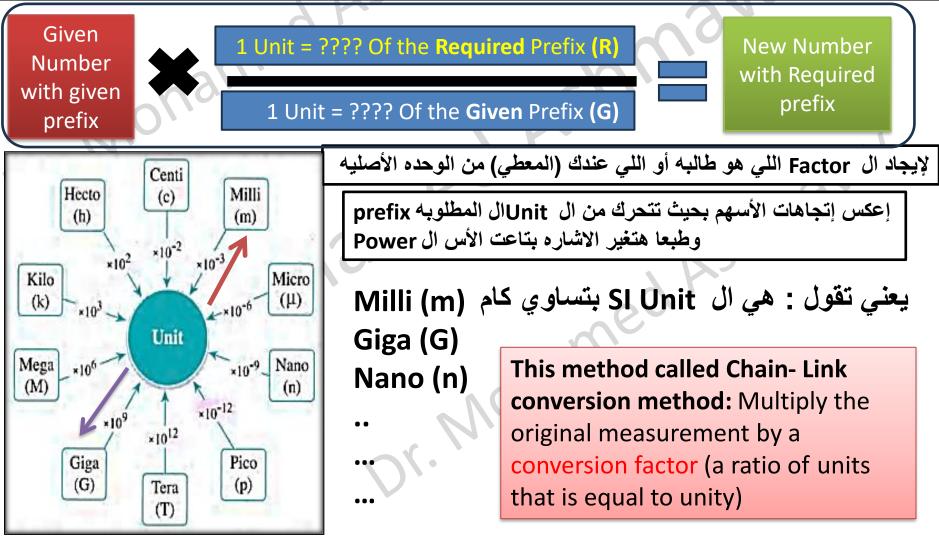
[Accurate]

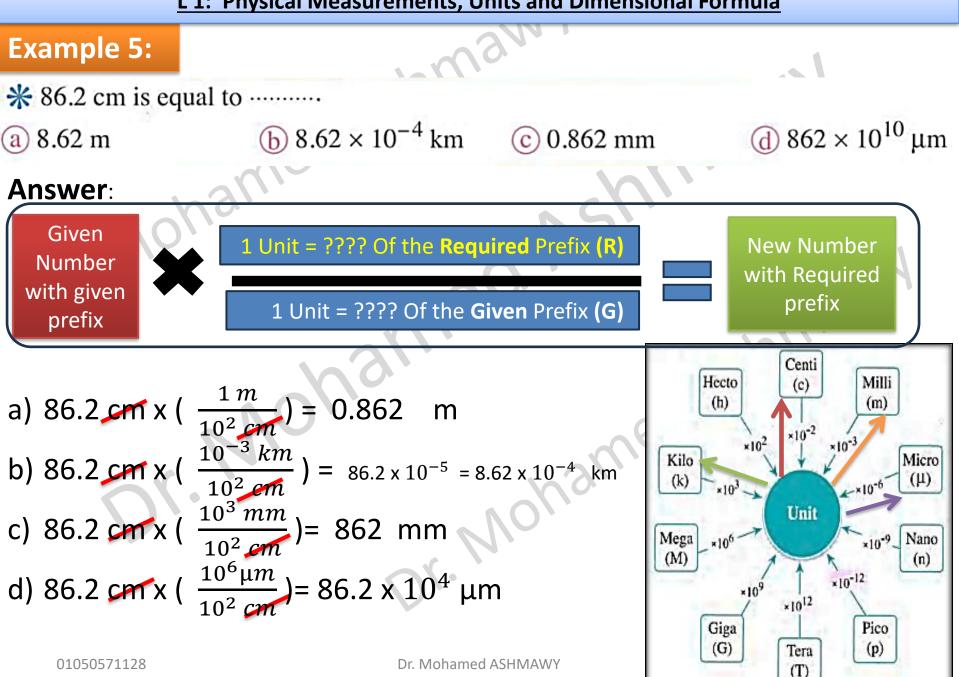
Platinum-iridium alloy is rigid, chemically inactive, and not affected by surrounding temp. Cesium Clock usage:

- 1. Determination of the duration of the Earth's spin
- 2. Checking up on aviation and navigation.
- 3. Verify the journey schedule of spaceships.

L1: Physical Measurements, Units and Dimensional Formula

d)Prefixes (Multiples and Fractions) of units in SI & Conversion of units Fraction **Multiples** Centi 1) Liter (L) is volume unit of Liq. Hecto Milli (c) And gases $(1L = 10^{-3} m^3)$ (h) (m) 2) 1 gram (g) = 10^{-3} kg ×10-2 ×10² ×10-3 3) 1 Ton = 10^3 kg Micro Kilo 13M (μ) (k) <-×10^{−6} ×10³ Unit Mega Nano ×10-9 ×10⁶ (M)(n) ×10-12 ×10⁹ ×10¹² Giga Pico (G) (p) Tera (T)

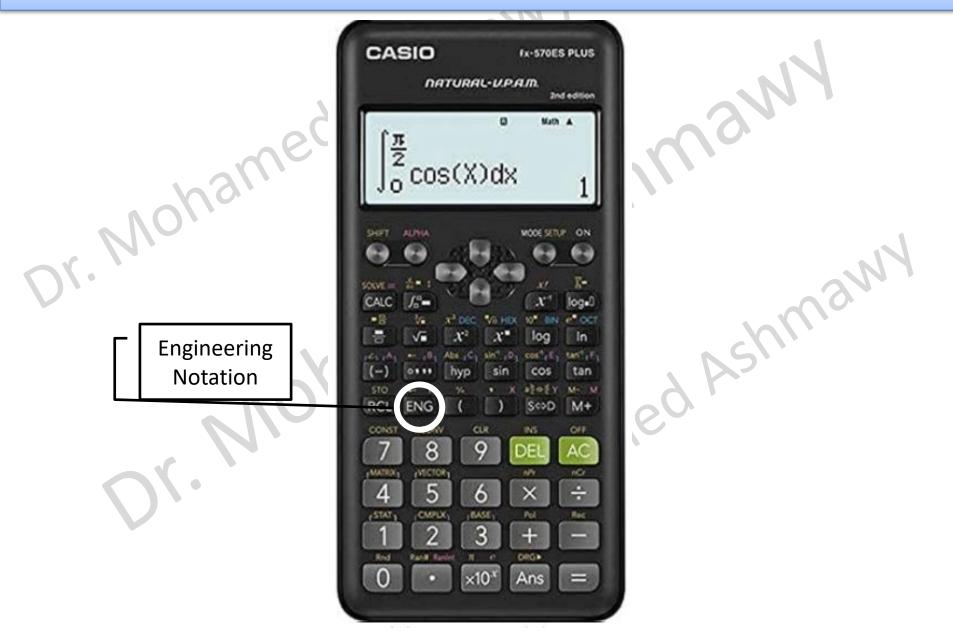

Table 1.3 Approximate Values of Length, Mass, and Time							
The reason of prefixes	Lengti	hs in Meters		es in Kilograms (more precise s in parentheses)		in Seconds (more precise s in parentheses)	
	10 ⁻¹⁸	Present experimental limit to smallest observable detail	10-30	Mass of an electron 9.11×10^{-31} kg	10 ⁻²³	Time for light to cross a proton	
	10-15	Diameter of a proton	10-27	Mass of a hydrogen atom $1.67 \times 10^{-27} \text{ kg}$	10-22	Mean life of an extremely unstable nucleus	
	10 ⁻¹⁴	Diameter of a uranium nucleus	10-15	Mass of a bacterium	10-15	Time for one oscillation of visible light	
	10-10	Diameter of a hydrogen atom	10-5	Mass of a mosquito	10-13	Time for one vibration of an atom in a solid	
	10-8	Thickness of membranes in cells of living organisms	10-2	Mass of a hummingbird	10 ⁻⁸	Time for one oscillation of an FM radio wave	
	10 ⁻⁶	Wavelength of visible light	1	Mass of a liter of water (about a quart)	10 ⁻³	Duration of a nerve impulse	
	10-3	Size of a grain of sand	10 ²	Mass of a person	1	Time for one heartbeat	
	1	Height of a 4-year-old child	10 ³	Mass of a car	10 ⁵	One day $8.64 \times 10^4 s$	
	10 ²	Length of a football field	10 ⁸	Mass of a large ship	10 ⁷	One year (y) $(3.16 \times 10^7 \text{ s})$	
	104	Greatest ocean depth	10 ¹²	Mass of a large iceberg	10 ⁹	About half the life expectancy of a human	
	107	Diameter of Earth	10 ¹⁵	Mass of the nucleus of a comet	10 ¹¹	Recorded history	
	10 11	Distance from Earth to the Sun	10 ²³	Mass of the Moon $(7.35 \times 10^{22} \text{ kg})$	10 ¹⁷	Age of Earth	
	10 ¹⁶	Distance traveled by light in one year (a light year)	10 ²⁵	Mass of Earth $(5.97 \times 10^{24} \text{ kg})$	10 ¹⁸	Age of the universe	
	10 ²¹	Diameter of the Milky Way Galaxy	10 ³⁰	$\begin{array}{l} \text{Mass of the Sun} \\ \left(1.99\times10^{30} \ \text{kg}\right) \end{array}$			
	10 ²²	Distance from Earth to the nearest large galaxy (Andromeda)	10 ⁴²	Mass of the Milky Way Galaxy (current upper limit)			
	10 ²⁶	Distance from Earth to the edges of the known universe	10 ⁵³	Mass of the known universe (current upper limit)			


Do Not Forget

6 Rules of exponents

	and the second	I I I	
	Rule	Example	
	x ⁰ = 1	$(2^0) = 1$	
	$x^1 = x$	$(-4)^1 = -4$	
Dr. Mr	$\mathbf{x}^{-\mathbf{m}} = \frac{1}{\mathbf{x}^{\mathbf{m}}}$	$(3)^{-2} = \frac{1}{(3)^2} = \frac{1}{9}$	Nany
	$(\mathbf{x}^{\mathbf{m}})^{\mathbf{n}} = \mathbf{x}^{\mathbf{m}\mathbf{n}}$	$(2^2)^3 = (2)^{2 \times 3} = (2)^6 = 64$	10°0
	$(\mathbf{X}\mathbf{y})^{\mathbf{m}} = \mathbf{X}^{\mathbf{m}} \mathbf{y}^{\mathbf{m}}$	$(2 \times 3)^2 = (2)^2 \times (3)^2 = 36$	
	$\left(\frac{x}{y}\right)^m = \frac{x^m}{y^m}$	$\left(\frac{1}{3}\right)^2 = \frac{(1)^2}{(3)^2} = \frac{1}{9}$	
	$\mathbf{x}^{\mathbf{m}} \mathbf{x}^{\mathbf{n}} = \mathbf{x}^{\mathbf{m}+\mathbf{n}}$	$(2)^{3} \times (2)^{-2} = (2)^{3+(-2)} = (2)^{1} = 2$	
	$\frac{\mathbf{x}^{\mathbf{m}}}{\mathbf{x}^{\mathbf{n}}} = \mathbf{x}^{\mathbf{m}-\mathbf{n}}$	$\frac{(3)^4}{(3)^{-2}} = (3)^{4-(-2)} = (3)^6 = 729$	
	$x^{\frac{m}{n}} = \sqrt[n]{x^m}$	$(8)^{\frac{1}{3}} = \sqrt[3]{8} = 2$	

How to convert same quantity with different prefixes in SI Units (1st Case: units without power)



	 ns 1) Take care of the units of the choices 2) Changing the position of the decimal point 		
Moving decimal point to the Right then subtract the power (RS)	Moving the decimal point to the left then add to the power (LA)		
Ex1 : 573.2105×10^{2} = 5732.105×10^{2} = 57321.05×10^{1} = $57321.05 \times 10^{1-1}$ = 57321.05×10^{0} = 57321.05 Ex2 : 573.2105×10^{-2} = $5732.105 \times 10^{-2-1}$ = 5732.105×10^{-3} = 57321.05×10^{-4} = 573210.5×10^{-5} = 5732105.0×10^{-6}	Ex1 : 573.2105×10^{2} = $57.32105 \times 10^{2+1} = 57.32105 \times 10^{3} =$ $5.732105 \times 10^{3+1} = 5.732105 \times 10^{4} =$ $0.5732.105 \times 10^{5} = 0.05732105 \times 10^{6}$ Ex2 : $573.2105 \times 10^{-2} =$ $57.32105 \times 10^{-2+1} = 57.32105 \times 10^{-1} =$ $5.732105 \times 10^{-1+1} = 5.732105 \times 10^{0} =$ $0.5732105 \times 10^{0+1} = 0.5732105 \times 10^{1}$		

Rule: RS- LA

Right Subtract- Left Add Check from "ENG" button from Calculator

Example 6:

If the radius of the hydrogen atom is 0.053 nm, then it is equivalent to

(a) 0.53×10^{-10} m (b) 5.3×10^{-11} m (c) 53×10^{-12} m (d) all the previous Answer: Given 1 Unit = ???? Of the **Required** Prefix (R) **New Number** Number with Required with given prefix 1 Unit = ???? Of the Given Prefix (G) prefix Centi Hecto Milli (c) a) 0.053 nm x ($\frac{1 m}{10^9 nm}$) = 0.053 x 10^{-9} = 0.53 x 10^{-10} (h) (m) m ×10 b) 0.053 nm x $\left(\frac{1 m}{10^9 nm}\right) = 0.053 \times 10^{-9} = 5.3 \times 10^{-11}$ m Kilo Micro (µ) (k) c) 0.053 nm x ($\frac{1 m}{10^9 nm}$) = 0.053 x 10^{-9} = 53 x 10^{-12} m Unit Mega ×10-9 d) All the previous Nano (M) (n) ×10⁻¹²

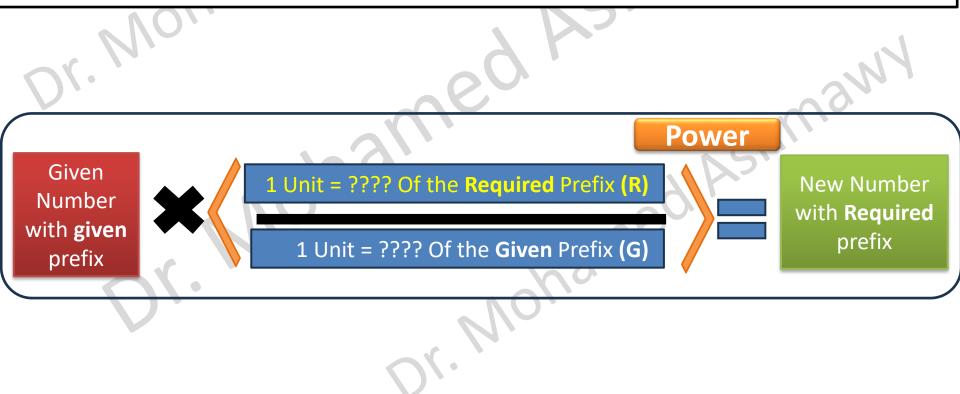
×10

Giga

(G)

×1012

Tera


(T)

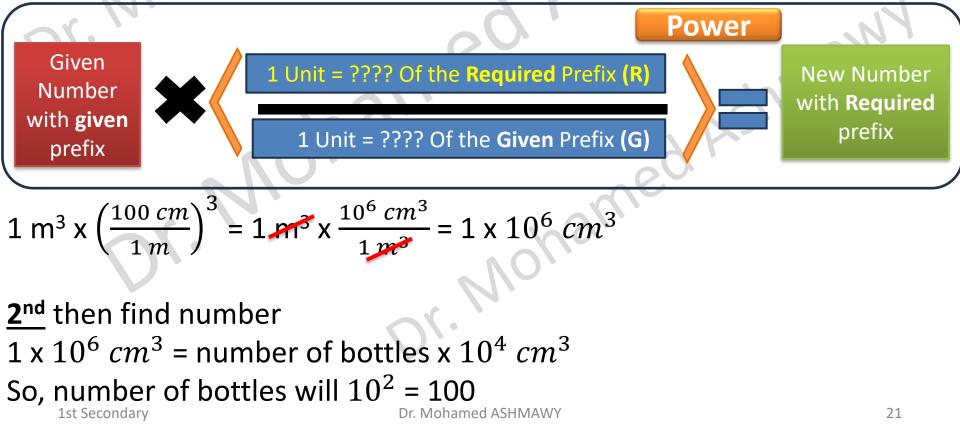
Pico

(p)

How to convert same quantity with different prefixes in SI Units (2nd Case: units with power)

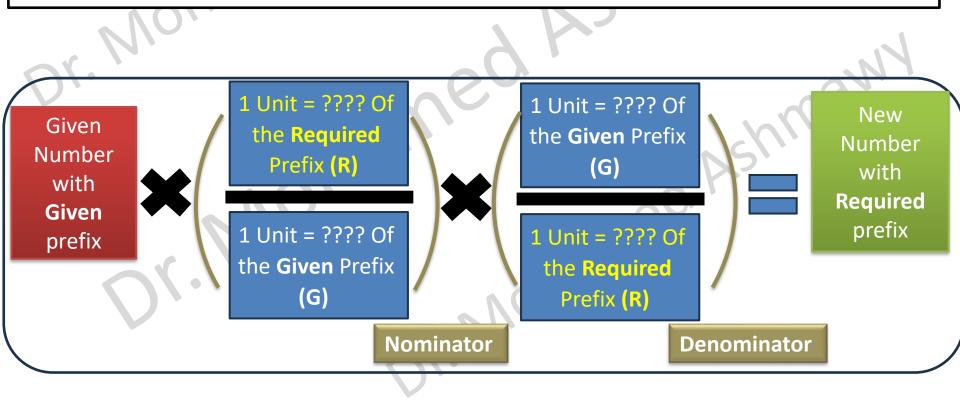
Same rule with powering the conversion factor with the same power of the given prefix or given unit.

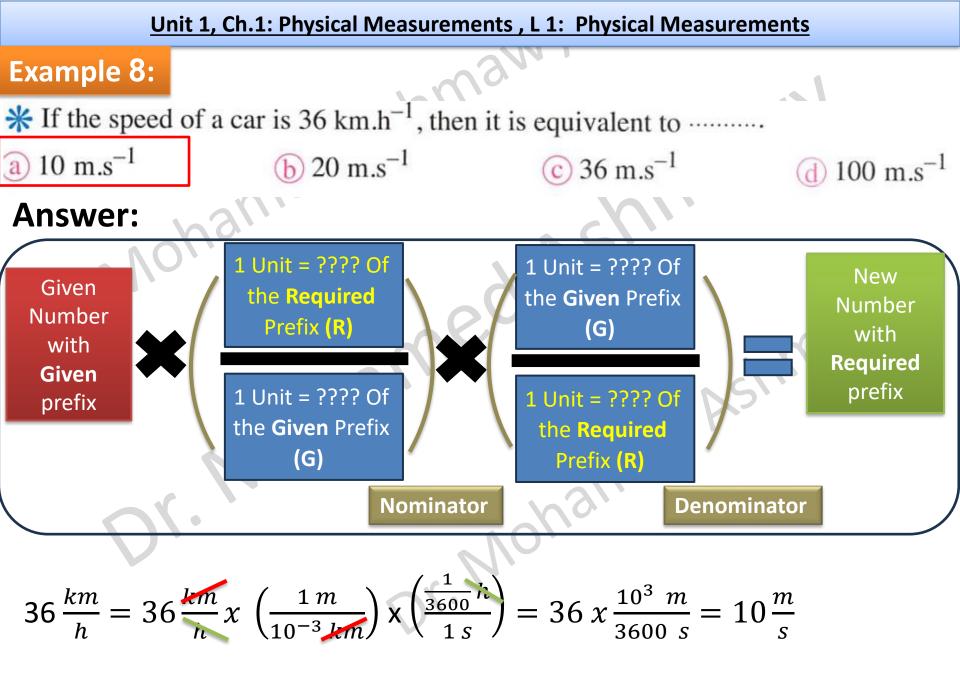
Example 7:


How many bottles of volume 10000 cm³ is enough to fill a tank of capacity 1 m³?

1000

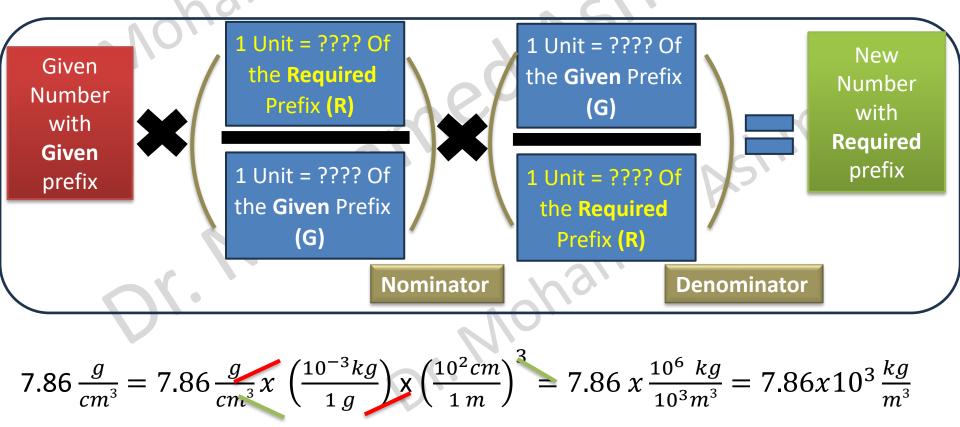
100


a) 1 (b) 10 Answer:

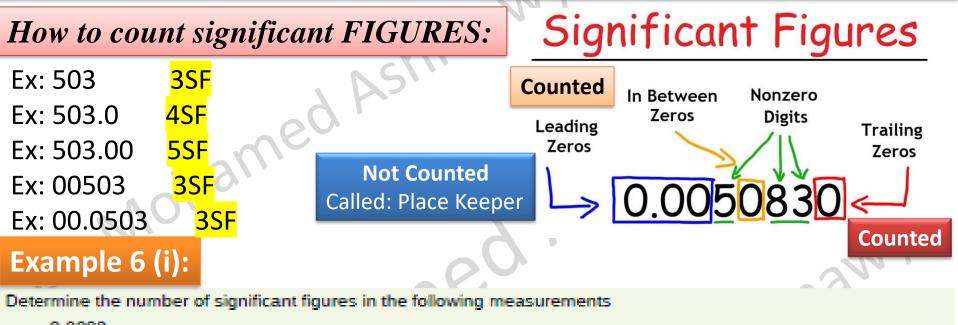

<u> $\mathbf{1^{st}}$ </u> transfer m³ to cm³ to able to compare between two values.

How to convert same quantity with different prefixes in SI Units (3rd Case: nominator/denominator units convert)

Same previous rule for nominator and reciprocal for denominator



Example 9:


The density of iron is 7.86 g/cm^3 under standard conditions. Convert this to kg/m^3 .

Answer:

Significant Figures (Digits), it is rule that can express on the uncertainty in the measurement such that *the last digit written down in a measurement is the first digit with some uncertainty*.

This method is existed with tools (*OR given in the problem*) to help n the an the Ashman Ashman identifying the uncertainty instead of estimating it by eyes as in the following.

- a. 0.0009
- b. 15,450.0
- c. 6 × 10³
- d. 87.990
- e. 30.42

Solution

- (a) one; the zeros in this number are placekeepers that indicate the decimal point
- (b) six; here, the zeros indicate that a measurement was made to the 0.1 decimal point, so the zeros are significant
- (c) one; the value 10^3 signifies the decimal place, not the number of measured values
- (d) five; the final zero indicates that a measurement was made to the 0.001 decimal point, so it is significant
- (e) four; any zeros located in between significant figures in a number are also significant 01050571128 Dr. Mohamed ASHMAWY

Example 6 (j):

Ashmat How many significant figures are in the following numbers?

- 3.788×10^9 4 SF a)
- 2.46×10^{-6} 3 SF *b*)
- 0.0053 2 SF C)

Mohamedt

Significant Figures in Calculations

When combining measurements with different degrees of accuracy and precision, *the number of significant digits in the final answer can be no greater than the number of significant digits in the least precise measured value*

 $A = \pi r^2 = (3.1415927...) \times (1.2 \text{ m})^2 = 4.5238934 \text{ m}^2$

A=4.5 m²,

- 7.56 kg
- 6.052 kg
- $\frac{+13.7 \text{ kg}}{15.208 \text{ kg}} = 15.2 \text{ kg}.$

Example 6 (k):

Perform the following calculations and express your answer using the correct number of significant digits.

(a) A woman has two bags weighing 13.5 pounds and one bag with a weight of 10.2 pounds. What is the total weight of the bags?

(b) The force F on an object is equal to its mass m multiplied by its acceleration a. If a wagon with mass 55 kg accelerates at a rate of 0.0255 m/s^2 , what is the force on the wagon? The unit of force is called the newton, and it is expressed with the symbol N.

Solution

- (a) 37.2 pounds; Because the number of bags is an exact value, it is not considered in the significant figures.
- (b) 1.4 N; Because the value 55 kg has only two significant figures, the final value must also contain two significant figures.

3) Dimensional Formula

It is a form that represents **derived quantities** (*infinite numbers*) in terms of **fundamental quantities** (Length [L], Mass [M], and Time [T]); all must be in capital letters. $[A]=[M^{\pm a} L^{\pm b} T^{\pm c}]$

Important Notes :

- 1) M not meter (m), it indicates to Mass L not litter (L), it indicates to Length T not Tension (T), it indicates to time
- 2) If the dimensions of both sides are *identical, so this relation <u>may be correct</u>* (*not for sure*), *but* if the dimensions are *not the same, so the relation <u>must be incorrect</u>*
- 3) The dimensional formula <u>could be</u> <u>multiplied or divided</u> but <u>couldn`t be</u> <u>added or subtracted unless</u> they have the same unit, and the result <u>will be the same</u> <u>without any numbers.</u>

Do Not Forget 6 Rules of exponents Rule Example $x^0 = 1$ $(2^0) = 1$ $x^1 = x$ $(-4)^1 = -4$ $(3)^{-2} = \frac{1}{(3)^2} = \frac{1}{9}$ $x^{-m} = \frac{1}{x^{m}}$ $(2^2)^3 = (2)^{2 \times 3} = (2)^6 = 64$ $(\mathbf{x}^{\mathbf{m}})^{\mathbf{n}} = \mathbf{x}^{\mathbf{mn}}$ $(Xy)^m = X^m y^m$ $(2 \times 3)^2 = (2)^2 \times (3)^2 = 36$ $\left(\frac{1}{3}\right)^2 = \frac{(1)^2}{(3)^2} = \frac{1}{9}$ $\left(\frac{x}{y}\right)^m = \frac{x^m}{v^m}$ $(2)^{3} \times (2)^{-2} = (2)^{3+(-2)} = (2)^{1} = 2$ $x^m x^n = x^{m+n}$ $\frac{(3)^4}{(3)^{-2}} = (3)^{4-(-2)} = (3)^6 = 729$ $\frac{x^m}{x^n} = x^{m-n}$ $(8)^{\frac{1}{3}} = \sqrt[3]{8} = 2$ $x^{\frac{m}{n}} = \sqrt[n]{x^m}$

Example 7:

What is the dimensional formula of velocity?

Solution:

: velocity [v] = distance / time = $[L]/[T] = [L][T^{-1}] = [M^0L^1T^{-1}]$

Example 8:

- Verify the relation of the volume of a cube, Volume $(V)=(Length)^3$.
- Solution: \therefore L.H.S unit is known to be m³, so its dimensional formula is $[L^3] = [M^0 L^3 T^0]$
- \therefore R.H.S is (Length)³ = m³ and also its dimensional is [L³].
- $\therefore L.H.S. = R.H.S.$

So, the relation *may be correct (possible)*.

Example 9:

Verify the relation of the volume of cylinder V= $2\pi r$. h.

Solution:

- \therefore L.H.S unit is known to be m³, so its dimensions is [L³]
- : R.H.S is $2\pi r. h = [L].[L] = [L^2]$
- $\therefore L.H.S. \neq R.H.S.$

So, the relation *is not correct at all*.

Example 10:

Which of the following equations are dimensionally correct? *a*) $v_f = v_i + ax$

$$\frac{[L]}{[T]} = \frac{[L]}{[T]} + \frac{[L]}{[T]^2} [L] \rightarrow \frac{[L]}{[T]} = \frac{[L]}{[T]} + \frac{[L]^2}{[T]^2} \rightarrow dimentionally incorrect$$

b) $y = (2 m) \cos(kx)$, where $k = 2 m^{-1}$. (here m is meters)
 $[L] = [L] \cos\left(\frac{1}{[L]}[L]\right) \rightarrow [L] = [L] \rightarrow dimentionally correct$

Example 11:

If the dimensional formula of quantity A is $ML^2 T^{-2}$ and the dimensional formula of quantity B is $ML^2 T^{-2}$, then the quantity (2B - A) (a) has a dimensional formula of $ML^2 T^{-2}$ (b) has a dimensional formula of $M^2 L^4 T^{-4}$ \odot has a dimensional formula of M³ L⁶ T⁻⁶ hamed Ash. (d) isn't a physical quantity

~