

Lesson`s Outlines:

 Physical quantities and Measuring Tools
Measuring Units (Systems, SI, Standard Units, Prefixes & Conversion of units)
Dimensional Formula

c. Mol

1) Physical quantities and Measuring Tools

Physical Measurement process elements are physical quantity, tool

a) Physical Quantities: Classified according to derivation

Fundamental

- Quantity that cannot be defined in terms of other
- Ex: Length, Mass, Time

Derived

- Quantity that is defined in terms of fundamental
- Ex: Force, Speed, Work

Example 1:

- The fundamental physical quantities from the following are
- (a) the length and the area
- c) the mass and the volume

the velocity and the acceleration

hwaw

d the time and the mass

Example 2:

The derived physical quantities from the following are

- a velocity distance time
- c work force distance

b mass - density - volume

force - volume - density

Example 3:

The suitable tool for measuring the length of a room is

The suitable tool for measuring the mass of a golden ring is

2) Measuring Units (Systems, SI, Standard Units, Prefixes and Conversion of Units)

a) Unit Systems

	Units of measurement		
The System of fundamental units physical quantity	The French system (Gaussian system) (C.G.S)	The British system (F.P.S)	The Metric system (M.K.S)
Length (l)	Centimeter (cm)	Foot (ft)	Meter (m)
Mass (m)	Gram (g) Pound (lb)	Kilogram (kg)	
Time (t)	Second (s)	Second (s)	Second (s)

b) International System (SI) Unit The international unit The physical quantity Meter (m) 1 Length (l) Kilogram (kg) 2 Mass (m) SN, Second (s) Time (t) Ampere (A) Electric current intensity (I) Kelvin (K) S Absolute temperature (T) Mole (mol) 6 Amount of substance (n) Candela (cd) \mathcal{D} Luminous intensity (I_v) Radian (rad) 8 Plane angle Steradian (sr) Solid angle

c) Standard Units

The Standard Length (The Standard Meter) It is the distance between two engraved marks at the ends of a rod made of platinum and iridium alloy kept at 0°C.

The Standard Mass (The Standard Kilogram)

It is the mass of a cylinder made of platinum and iridium alloy of specific dimensions kept at 0°C.

The Standard Time (The Standard Second)

Usually 1 second measured w.r.t. :

Day and night times

1 Sec =
$$\frac{1}{24 \times 60 \times 60} = \frac{1}{86400}$$
 Day
Recently:

An Atomic (Cesium) clock is used

[Accurate]

Platinum-iridium alloy is rigid, chemically inactive, and not affected by surrounding temp. Cesium Clock usage:

- 1. Determination of the duration of the Earth's spin
- 2. Checking up on aviation and navigation.
- 3. Verify the journey schedule of spaceships.

3) Dimensional Formula

It is a form that represents **derived quantities** (*infinite numbers*) in terms of **fundamental quantities** (Length [L], Mass [M], and Time [T]); all must be in capital letters. $[\Lambda] - [\Lambda] + [\Lambda] +$

Important Notes :

- 1) M not meter (m), it indicates to Mass L not litter (L), it indicates to Length T not Tension (T), it indicates to time
- 2) If the dimensions of both sides are *identical, so this relation <u>may be correct</u>* (*not for sure*), *but* if the dimensions are *not the same, so the relation <u>must be incorrect</u>*
- 3) The dimensional formula <u>can be</u> <u>multiplied or divided</u> but couldn`t be added or subtracted_and if so, they will give the same dimension.

4) Numbers $(2, \pi)$ and trigonometric functions (sin, cos, tan) have no units and dimensions

A]	= $[M^{\pm a} L^{\pm b} T$				
A Rules of expenses			Do Not Forget		
	whes of exponents		101800		
	Rule	Exar	nple		
	$x^0 = 1$	(2 ⁰)	$(2^0) = 1$		
	x ¹ = x	(-4)1	=-4		
	$\mathbf{x}^{-\mathbf{m}} = \frac{1}{\mathbf{x}^{\mathbf{m}}}$	$(3)^{-2} = \frac{1}{(3)^2} = \frac{1}{9}$ $(2^2)^3 = (2)^{2 \times 3} = (2)^6 = 64$ $(2 \times 3)^2 = (2)^2 \times (3)^2 = 36$ $\left(\frac{1}{3}\right)^2 = \frac{(1)^2}{(3)^2} = \frac{1}{9}$			
	$(\mathbf{x}^{\mathbf{m}})^{\mathbf{n}} = \mathbf{x}^{\mathbf{m}\mathbf{n}}$				
	$(\mathbf{X}\mathbf{y})^{\mathbf{m}} = \mathbf{X}^{\mathbf{m}} \mathbf{y}^{\mathbf{m}}$				
	$\left(\frac{x}{y}\right)^m = \frac{x^m}{y^m}$				
	$\mathbf{x}^{\mathbf{m}} \mathbf{x}^{\mathbf{n}} = \mathbf{x}^{\mathbf{m}+\mathbf{n}}$	$(2)^3 \times (2)^{-2} = (2)^3$	$(2)^{3} \times (2)^{-2} = (2)^{3+(-2)} = (2)^{1} = 2$		
	$\frac{\mathbf{x}^{\mathbf{m}}}{\mathbf{x}^{\mathbf{n}}} = \mathbf{x}^{\mathbf{m}-\mathbf{n}}$	$\frac{(3)^4}{(3)^{-2}} = (3)^{4-(-1)}$	$^{(2)} = (3)^6 = 729$		
	$x^{\frac{m}{n}} = \sqrt[n]{x^m}$	$(8)^{\frac{1}{3}} = 1$	$\sqrt{8}=2$		

Example 11:

What is the dimensional formula of velocity?

Solution:

: velocity [v] = distance / time = $[L]/[T] = [L][T^{-1}] = [M^0L^1T^{-1}]$

Example 12:

- Verify the relation of the volume of a cube, Volume $(V)=(Length)^2$.
- Solution: \therefore L.H.S unit is known to be m³, so its dimensional formula is $[L^3] = [M^0 L^3 T^0]$
- : [R.H.S] dimensions is [L²].
- $\therefore L.H.S. \neq R.H.S.$
- So, the relation *is not correct*.

1st Secondary

Example 13:

Verify the relation of the volume of cylinder V= $2\pi r$. h.

Solution:

- \therefore L.H.S unit is known to be m³, so its dimensions is [L³]
- : R.H.S is $2\pi r. h = [L].[L] = [L^2]$
- $\therefore L.H.S. \neq R.H.S.$

So, the relation is not correct at all.

Example 14:

Which of the following equations are dimensionally correct? *a*) $v_f = v_i + ax$

$$\frac{[L]}{[T]} = \frac{[L]}{[T]} + \frac{[L]}{[T]^2} [L] \rightarrow \frac{[L]}{[T]} = \frac{[L]}{[T]} + \frac{[L]^2}{[T]^2} \rightarrow dimentionally incorrect$$

b) $y = (2 m) \cos(kx)$, where $k = 2 m^{-1}$. (here *m* is meters)
 $[L] = [L] \cos\left(\frac{1}{[L]}[L]\right) \rightarrow [L] = [L] \rightarrow dimentionally correct$

Example 15:

- If the dimensional formula of quantity A is $ML^2 T^{-2}$ and the dimensional formula of quantity B is $ML^2 T^{-2}$, then the quantity (2B A)
- (a) has a dimensional formula of $ML^2 T^{-2}$
- (b) has a dimensional formula of $M^2 L^4 T^{-4}$
- \odot has a dimensional formula of M³ L⁶ T⁻⁶
- (d) isn't a physical quantity

Example 16:

* If F is the force that acts on a static body of mass m to reach a velocity v through time t, then the two physical quantities mv and Ft have

(Knowing that:
$$[F] = MLT^{-2}$$
, $[v] = LT^{-1}$)

a different dimensions

b the same dimensions

c different measuring units

d no meaning

r. Mohamer