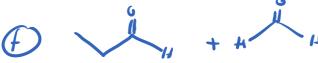
PROBLEM SET 3

1. Write structural formulas for the products that form when 1-butene reacts with each of the following reagents:

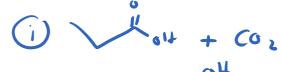
a. HJ

b. H₂, Pt


c. HBr

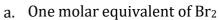
d. Br₂ in CCl₄

e. Br₂ in H₂O


f. O_3 , then Me_2S

g. OsO₄, then NaHSO₃/H₂O

h. $KMnO_4$, HO^- , heat, then H_3O^+



i. Hg(OAc)₂ in THF and H₂O, then NaBH₄, HO

j. BH₃:THF, then H₂O₂, HO⁻

2. Give the structure of the products that you would expect from the reaction of 1-hexyne with:

c. Two molar equivalents of HBr

d. H₂ (in excess)/Pt

3. Write a mechanism for the following reaction.

4. Synthesize the following compound starting with ethyne and 1-bromopentane as your only organic reagents (except for solvents) and using any needed inorganic compounds.

$$CH \equiv CH \qquad \frac{NaNH_{L}}{|iq.NU_{J}} \qquad HC \equiv C: Na$$

$$HBr$$

$$HBr$$

$$Br_{2}$$

$$HC \equiv C: Na$$

$$Br_{3}$$

$$Br_{4}$$

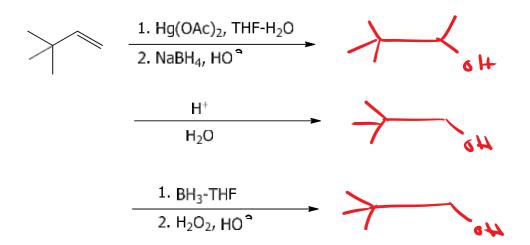
$$Br_{2}$$

$$Br_{3}$$

$$Br_{4}$$

$$Br_{5}$$

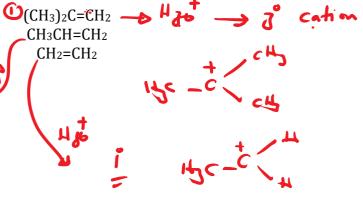
$$Br_{5}$$


$$Br_{6}$$

$$Br_{7}$$

$$Br_{8}$$

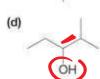
HB


5. Starting with the same alkene, write the major products of the following reactions:

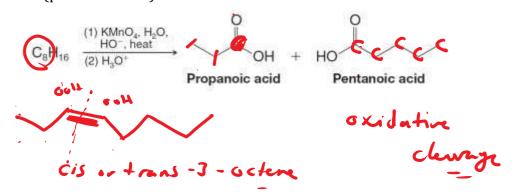
X The following order of reactivity is observed when the following alkenes are subjected to acid-catalyzed hydration:

Explain order of reactivity.

CH₃CH=CH₂ CH₂=CH₂



7. Specify the appropriate alkene for synthesis of each of the following alcohols by hydroboration-oxidation.

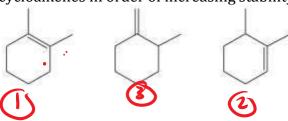


8. An unknown alkene with the formula C_8H_{16} was found, on oxidation with hot basic permanganate, to yield a three carbon carboxylic acid (propanoic acid) and a five-carbon carboxylic acid (pentanoic acid). What was the structure of this alkene?

9. Give the structure of an unknown alkene with the formula C_7H_{12} that undergoes ozonolysis to yield, after acidification, only the following product:

10. Predict the products of the following ozonolysis reactions.

(a)
$$(1) O_3$$
 $(2) Me_2S$ $(1) O_3$ $(2) Me_2S$ $(3) Me_2S$ $(4) O_3$ $(5) Me_2S$ $(5) Me_2S$ $(6) Me_2S$ $(7) Me_2S$ $(8) Me_2S$ $(9) Me_2S$ $(1) O_3$ $(2) Me_2S$ $(3) Me_2S$ $(4) Me_2S$ $(5) Me_2S$ $(6) Me_2S$ $(7) Me_2S$ $(8) Me_2S$ $(9) Me_2S$ $(1) O_3$ $(2) Me_2S$ $(3) Me_2S$ $(4) Me_2S$ $(5) Me_2S$ $(6) Me_2S$ $(7) Me_2S$ $(8) Me_2S$ $(8) Me_2S$ $(9) Me_2S$ $(1) Me_2S$ $(1) Me_2S$ $(2) Me_2S$ $(3) Me_2S$ $(4) Me_2S$ $(5) Me_2S$ $(6) Me_2S$ $(7) Me_2S$ $(8) Me_2S$ $(8) Me_2S$ $(9) Me_2S$ $(1) Me_2S$ $(1) Me_2S$ $(2) Me_2S$ $(3) Me_2S$ $(4) Me_2S$ $(5) Me_2S$ $(6) Me_2S$ $(7) Me_2S$ $(8) Me_2S$ $(8) Me_2S$ $(9) Me_2S$ $(1) Me_2S$ $(1) Me_2S$ $(2) Me_2S$ $(3) Me_2S$ $(4) Me_2S$ $(4) Me_2S$ $(4) Me_2S$ $(5) Me_2S$ $(6) Me_2S$ $(7) Me_2S$ $(8) Me_2S$ $(8) Me_2S$ $(8) Me_2S$ $(9) Me_2S$ $(1) Me_2S$ $(1) Me_2S$ $(2) Me_2S$ $(3) Me_2S$ $(4) Me_2S$ $(5) Me_2S$ $(6) Me_2S$ $(7) Me_2S$ $(8) Me_2S$


- 11. Write structures for the major organic products from the following reactions.
- (a) H₂O, H₂SO₄

(d)
Br₂

(c) (1) BH₃: THF (2) NaOH, H₂O₂

(e) (1) O₃ (2) Me₂S

- (9) ()H
 - 12. Rank the following cycloalkenes in order of increasing stability.

13. Write structures for the major organic products from the following reactions.

