

7) Given the following reaction:	7)
$P_{4(s)} + CIO^{-}(aq) \rightarrow PO_{4}^{3}(aq) + CI^{-}(aq)$	
 a) balance the equation for redox reaction in acidic solution by showing oxidation states, indicating reduced and oxidized species, showing half-reactions and necessary steps. b) Suppose that the reaction occurs in basic solution, based on your answer in part a, show the 	
balanced equation of the redox reaction in one step.	
[] Oxigating _ increase in Oxidation no.	
Reduction - decreent in oxidation no.	
(Tam) & Fixed O.N	
12y Cl. No Fe & free element (49p1 = +1	ı ⁾ u
* while company (0.N) Li, Na, 1c, Rb, C,	
410:3 , CS1:4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	42
Nucl:0 Be, SV, MJ, Ca, Ra, Ba	
+1 = Nat charge & A1 = +3	
-3 = 9	
-3-1 2-504 CA=+L	
W = -1×	
metal = 0 = -2	
My Mix 0 1 = +1	
$P_{y} = 0$	* 194
clo = -1 -> cl+0=-1 -> cl-2=1 [cl=+1]	clo
PDY = -3 -> P+40 = -3 -> P+4(-2)=-3 P=+8-]=+5	Po

* (CI = -1)

8)	a) What is the partial pressure of $F_{2(g)}$, in mmHg, at 25.0°C and 12.0 atm in a gaseous mixture that consists of 18.5% He, 57.9% Kr, and 23.6% F_2 , by mass?
	b) At what temperature will urms for $He_{(g)}$ be the same as urms for $Kr_{(g)}$ at 25.0°C?

9) Consider a gas mixture that has the following composition:

Gas	CH ₄	CO ₂	N ₂	H ₂	O ₂
Pressure percentage	14.1%	1.50%	10.3%	32.7%	41.40%

a) W	hat is the dens	ity of this ga	s at 5.0°C and	792 mmHg.	in grams per liter?
------------------------	-----------------	----------------	----------------	-----------	---------------------

a) b)	What is the density of this gas at 5.0°C and 792 mmHg, in grams per liter? What is the partial pressure of N₂ in the mixture at 15.0°C and 1.45 atm?

10) Hydrocarbons are organic compounds consisting of hydrogen and carbon only. Burning hydrocarbons in the presence of oxygen, O ₂ , produces carbon dioxide, CO ₂ , and water, H ₂ O. Methane, CH ₄ , is a hydrocarbon used primarily as fuel to make heat and light. The overall reaction of a number of such steps of methane gas is:
$CH_4(q) + O_2(q) + NO_2(q) \rightarrow CO_2(q) + H_2O_2(q) + NO_2(q) + OH_2(q)$
Suppose that 3.92 L of methane at STP, 10.8 L of oxygen at STP, and 8.3 L of nitrogen monoxide at STP were combined in a 7.0 L flask. The reaction is allowed the stand for several weeks at 275 K. If the reaction reaches 79.5% of completion, what is the total pressure in the flask? What is the partial pressure of $CH_{4(g)}$ and $H_2O_{(g)}$ in the flask?