Gravimetric Analysis Methods

Question 1

The calcium in a 200.0 ml sample of a natural water was determined by precipitating the cation as calcium oxalate (CaC_2O_4) . The precipitate was filtered, washed, and ignited in a crucible with an empty mass of 26.6002 g. The mass of the crucible plus calcium oxide (CaO) (56.077 g/mol) was 26.7134 g. Calculate the concentration of Ca (40.078 g/mol) in water in units of grams per 100 mL of the water.

 CaC_2O_4 $CaCO_3(s) + CO(g)$ calcium oxalate calcium carbonate $CaCO_3 \rightarrow$ $CaO(s) + CO_2(g)$ calcium oxide Solution: Mr as = 56.077 glass Ar cu = 40.078 empty mult = 26.7134 J unknown: Ca g/loo ml () Calculate mass of case = M Crucible + Cao = 26. 7134 g - 26.6 002 g = 0.1132 g 2 Cakulate no. 1 males of Cao $n = \frac{m}{M_r} = \frac{0.J132}{56.077} = 0.002018 \text{ mol}.$

(3) Calculat no.d maky
$$+$$
 Ca in CaC2SY
* $n_{cao} = n_{caceg} = n_{caceoy} = n_{ca} = 0.002018 \text{ mod}$
(d) Calculat mass y Ca
 $n = \frac{m}{Mr}$
 $m = n \times Mr$
 $= 0.002018 \times 40.078 = 0.0809 \text{ g}$
 $= in 200 \text{ ml} H_{20}$
(5) find Caac. y Ca in lue ml H_{20}
* H_{20} Ca
 $2uv \text{ ml} = 0.0809 \text{ g}$
 $Ivo \text{ ml} = 0.09045 \text{ g}/low m/H_{20}$

An iron ore was analyzed by dissolving a 1.1324 g sample in concentrated HCl. The resul6ng solution was diluted with water, and the iron(III) was precipitated as the hydrous oxide $Fe_2O_3 \cdot xH_2O$ by the addition of NH₃. After filtration and washing, the residue was ignited at a high temperature to give 0.5394 g of pure Fe_2O_3 (159.69 g/mol).

• Calculate (a) the % Fe (55.847 g/mol) and (b) the % Fe₃O₄ (231.54 g/mol) in the sample.

1.324 9

$$3Fe_2O_3(s) \rightarrow 2Fe_3O_4(s) + 1/2O_2(g)$$

Solution:

LO,5

(a

Mr Fe = 55.847 0/mal Mr Feroz = 159.61 0/mal Mr Feroz = 231.54 0/mal

() calculate no. of moles of
$$F_{e_2O_3}$$

 $n = \frac{m}{M_f} = \frac{0.5394}{159.69} = 0.007378$ mol

(2) Calculate no. of moles
$$f$$
 the troub r or s
 $Fe_2O_3 \longrightarrow 2Fe$
 $1 \iff 2$
 $0.00337s$

n = 2×0.00]]78 = 0.006756 mol

(i) Calculate mass
$$j$$
 fe

$$m_{fc} = n_{fc} \times M_{v}$$

$$= 0.006756 \times 55.847 = 0.3777 g Fe$$

(i) Calculate //Fe in Sample

$$\frac{1}{\sqrt{fr}} = \frac{m_{Fr}}{m_{Sample}} \times los = \frac{0.3773}{1.132 \text{ y}} \times los = \frac{73.72}{7}$$
(b)
(c) Calculate no.d makes of Feger
with chain eqn.
Feg. 03 Feger

$$3 = \frac{2}{2}$$

$$0.003378 = \frac{2}{7}$$

$$R_{form} = \frac{2\times0.003378}{3} = 0.002252 \text{ mol}.$$
(c) Calculate mass for FegOr

$$m_{FegOr} = \frac{1.2\times0.003378}{3} = 0.002252 \times 231.54$$

$$= 0.5213 \text{ g}$$
(frinding // FegOr in Sample

$$\frac{1}{\sqrt{FegOr}} = \frac{m_{FegOr}}{m_{Sample}} \times los = \frac{0.5213}{1.1324} \times los = 46.047/2$$

Treatment of a 0.2500 g sample of impure potassium chloride (KCI) with an excess of silver nitrate (AgNO₃) resulted in the forma6on of 0.2912 g of silver chloride (AgCl). Calculate the percentage of KCl in the sample. (M_W AgCl = 143.42 g/mol; M_W KCl = 74.55 g/mol)

 $\begin{array}{l} KCI + AgNO_3 \rightarrow AgCI \ (s) + KNO_3 \\ silver \ chloride \end{array}$

Solution:

Mr Agel = 143.42 01mol n = o.2500 g Sample n = 0.2912 JAgel Mr Kel = 74.55 g/mal % Kcl = ? (1) calculate no. 1 mahrs of Agel $N = \frac{m}{M_r} = \frac{6 \cdot 29/2}{143.42} = 0.002070 \text{ mol}$ (2 Calculate no. J mohr J kcl n = n Kcl = 0.002040 mol Agel Sume ratim in chem. equ-

G culculate mass f KCl $M = N \times Mr = 0.002070 \times 74.55 = 0.15139$

$$\frac{1}{Kcl} = \frac{m_{Kcl}}{m_{sample}} \times loo = \frac{0.1513}{0.2500} \times loo = \frac{0.52\%}{0.2500}$$

What mass of copper iodate $[Cu(IO_3)_2]$ can be formed from 0.50 g of $CuSO_4 \cdot 5H_2O$?

 $(M_W CuSO_{4.}5H_2O = 249.67 \text{ g/mol}; M_W Cu(IO_3)_2 = 413.35 \text{ g/mol})$

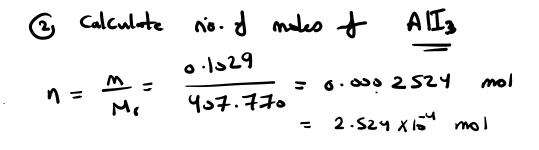
$$CuSO_4 + 2KIO_3 \rightarrow K_2SO_4 + Cu(IO_3)_2$$
copper iodate
$$m = 50 \text{ J} \qquad m = ?$$

$$knusn \qquad un known \\ mass \qquad J \qquad mass$$

Solution:

Find n -

(i) Calculate no. of males of Cuson


$$n = \frac{m}{M_r} = \frac{0.50}{249.67} = 0.002002 \text{ mol}$$


2

(2) Calculate
$$no \cdot j$$
 makes $f Cu(Toj)_i$
 $n = n_{cujoy} = 0.002002$ mol
 $Cu(Toj)_i = Cujoy$

(3) Finding mass of
$$Cn(To_3)_c$$

 $m = n \times M_r = 0.002002 \times 4/3.35$
 $= 0.8272$ g

Question 5 What mass of silver iodide (AgI) can be produced from a 0.512 g sample that assays 20.1% aluminium iodide (AlI₃) ? $(M_{\rm w} \; AII_3 = 407.770 \; g/mol; \; M_{\rm w} \; AgI = 234.773 \; g/mol)$ AII , 20.17 $\dot{AII}_3 + 3AgNO_3 \rightarrow \dot{3}AgI(s) + AI(NO_3)_3$ aluminium iodide silver iodide 20<u>.1 %</u> **Solution:** 0 = ? \bigcirc Finding mass AIL .SI z AIT "/ AII_3 = 20.1 %. MAILS : AIL = 0 0.512 6.512 x o .201 <u>مالا م</u> ۵.512 M AIL3 0.201 = 0.10 99

n AgI = 3x0.0002524 = 0.0007572 mol

(4) finding mass
$$f = AgI$$

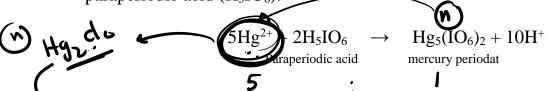
 $M = \Lambda \times M_r = 0.000 7572 \times 234.773$
 $= 0.1777 g$

A 0.2121 g sample of an organic compound was burned in a stream of oxygen, and the CO_2 produced was collected in a solution of barium hydroxide. Calculate the percentage of carbon in the sample if 0.6006 g of BaCO₃ was formed.

 $(M_W BaCO_3 = 197.34 \text{ g/mol}; M_W C = 12.011 \text{ g/mol})$

 $CO_2 + Ba(OH)_2 \rightarrow BaCO_3(s) + H_2O$

barium carbonate


Solution:

How many grams of CO₂ is evolved from a 1.500-g sample that is 38.0% MgCO₃ and 42.0% K₂CO₃ by mass? (M_W CO₂ = 44.01 g/mol; M_W MgCO₃ = 84.31 g/mol; M_W K₂CO₃ = 138.21 g/mol) MgCO₃ \rightarrow MgO + CO₂(g) K₂CO₃ \rightarrow K₂O + CO₂(g) + \wedge

(^

Solution:

The mercury in a 1.0451 g sample was precipitated with an excess of paraperiodic acid (H_5IO_6):

The precipitate was filtered, washed free of precipitating agent, dried, and weighed, and 0.4114 g was recovered. Calculate the percentage of mercury chloride (Hg₂Cl₂) in sample.

 $(M_W Hg_5(IO_6)_2 = 1448.75 \text{ g/mol}; Hg_2CI_2 = 472.09 \text{ g/mol})$

Solution:

Ammoniacal nitrogen can be determined by treatment of the sample with chloroplatinic acid; the product is slightly soluble ammonium chloroplatinate:

$$\begin{array}{c} H_2PtCI_6+2NH_4^+ \rightarrow (NH_4)_2PtCI_6+2H^+\\ Cloroplatinic acid & Amonium cloroplatinate \end{array}$$

The precipitate decomposes on ignition, yielding metallic platinum and gaseous Products:

$$(NH_4)_2 PtCI_6 \xrightarrow{\blacktriangleright} Pt(s) + 2CI_2(g) + 2NH_3(g) + 2HCI(g)$$

$$m = \circ \cdot 4693$$

$$(1) \downarrow$$

$$(2) \downarrow$$

$$(3) \downarrow$$

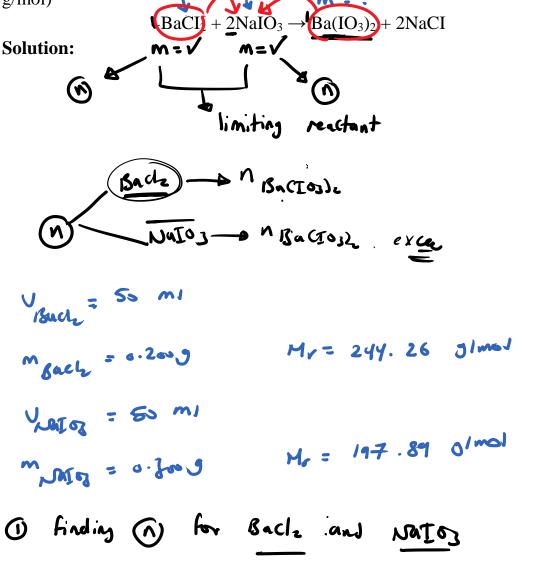
$$(4) \downarrow$$

$$(5) \downarrow$$

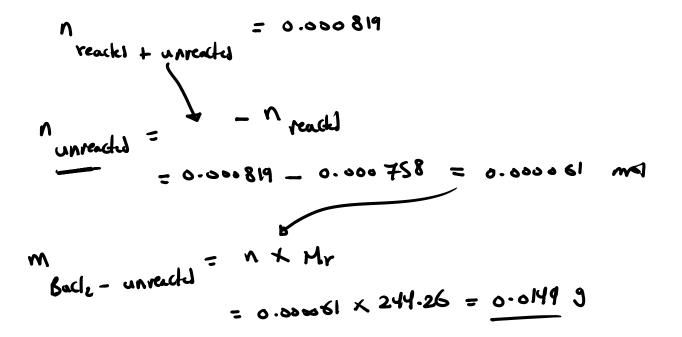
Calculate the percentage of ammonia in a sample if 0.2115 g gave rise to 0.4693 g of platinum. ($M_W NH_3 = 17.0306$ g/mol; Pt = 195.08 g/mol)

Solution:

() Calculate no.j makes
$$f$$
 pt
 $n_{pt} = \frac{m}{M_r} = \frac{0.4693}{195.03} = 0.002405$ mod
(2) Calculate no.j makes f NUJ
 pt NUJ
 pt NUJ
 $1 \\ 2 \\ 0.002405$
(3) Calculate mass f NUB


m = n × Mr = 0.004810 × 17.0306 = 0.08192 g

(4) Calculate 7. NHJ
7. NHJ =
$$\frac{m_{NHJ}}{m_{Sample}} \times los = \frac{0.08192}{0.2115} \times los = 38.737.$$


A 50.0 mL portion of a solution containing 0.200 g of $BaCl_2.2H_2O$ is mixed with 50.0 mL of a solution containing 0.300 g of sodium iodice [NaIO₃]. Assume that the solubility of barium iodice [Ba(IO₃)₂] in water is negligibly small and calculate

a) the mass of the precipitated barium iodide $[Ba(IO_3)_2]$.

b) the mass of the unreacted compound that remains in solution. $(M_w BaCI_2.2H_2O = 244.26 \text{ g/mol}; NaIO_3 = 197.89 \text{ g/mol}; Ba(IO_3)_2 = 487.13 \text{ g/mol})$

n duch =
$$\frac{m}{M_{1}} = \frac{a \cdot 2a \cdot a}{244 \cdot 26} = 0.000 811 \text{ mail}$$

n duch = $\frac{m}{M_{1}} = \frac{a \cdot 2a \cdot a}{147 \cdot 81} = 0.000 811 \text{ mail}$
(2) Determine the limiting reactant reached + unreached
a characteristic the limiting reactant $\frac{a \cdot a \cdot b \cdot b}{8a \cdot (107)_{2}} = 0.000 819$
(3) Calculate mass of $Ra(105)_{2}$ = $\frac{a \cdot a \cdot b \cdot 516}{2}$
(4) Calculate mass of $Ra(105)_{1}$
(5) Calculate mass of $Ra(105)_{1}$
(6) Calculate mass of $Ra(105)_{1}$
(7) Calculate mass of $Ra(105)_{1}$
(8) Calculate mass of $Ra(105)_{1}$
(9) Calculate mass of $a \cdot b \cdot 558 \times 487 \cdot 13 = a \cdot 3641 9$
(9)
(1) Calculate mass of $a \cdot a \cdot b \cdot 568 \cdot$

